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Abstract

Inspired by the human ability to learn and organize knowledge into hierarchical
taxonomies with prototypes, this paper addresses key limitations in current deep
hierarchical clustering methods. Existing methods often tie the structure to the
number of classes and underutilize the rich prototype information available at
intermediate hierarchical levels. We introduce deep taxonomic networks, a novel
deep latent variable approach designed to bridge these gaps. Our method optimizes
a large latent taxonomic hierarchy, specifically a complete binary tree structured
mixture-of-Gaussian prior within a variational inference framework, to automat-
ically discover taxonomic structures and associated prototype clusters directly
from unlabeled data without assuming true label sizes. We analytically show that
optimizing the ELBO of our method encourages the discovery of hierarchical
relationships among prototypes. Empirically, our learned models demonstrate
strong hierarchical clustering performance, outperforming baselines across diverse
image classification datasets using our novel evaluation mechanism that leverages
prototype clusters discovered at all hierarchical levels. Qualitative results further
reveal that deep taxonomic networks discover rich and interpretable hierarchical
taxonomies, capturing both coarse-grained semantic categories and fine-grained
visual distinctions.

1 Introduction

The human mind possesses an extraordinary capacity to learn, organize knowledge, and generalize
from experience, often constructing rich, abstract hierarchical category structures [42]. This learn-
ing journey begins early; even pre-linguistic infants demonstrate an ability to group objects into
rudimentary categories based on salient perceptual features like shape and parts, forming the initial
scaffolding of a hierarchical taxonomy without the need for explicit semantic symbols [35, 9, 2]. Two
key principles appear fundamental to this organization: the formation of hierarchical taxonomies
and the representation of categories via prototypes [35]. We naturally structure our knowledge in
nested levels of abstraction (e.g., collie → dog → mammal → animal) [37]. Within these hierarchies,
a ’basic level’ (e.g., dog, chair) emerges as psychologically privileged [4], representing an optimal
trade-off between informativeness and cognitive effort. This prototype serves as a cognitive reference
point, allowing for graded membership (e.g., a robin is a more prototypical bird than a penguin) and
facilitating efficient generalization to novel instances based on similarity to the prototype [7, 6].

Inspired by these powerful human capabilities, early computational approaches, such as Cobweb
[7, 13], explicitly attempted to support unsupervised, incremental learning of hierarchical, proba-
bilistic prototypes by optimizing category utility—a measure reflecting the trade-off between feature
predictability within a category and distinctiveness between categories [16, 4]. Modern deep learning
systems have revisited these themes, developing methods for hierarchical clustering [30, 48, 29], often
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integrating hierarchical structures and prototypes within neural networks to enhance performance,
interpretability, and robustness. Despite this progress in deep learning, two significant gaps persist.
Firstly, existing deep hierarchical clustering approaches often tie leaf nodes to fixed class labels and
require retraining to handle different classification granularity on the same data. Secondly, by treating
leaf clusters as terminal representations, current approaches overlook intermediate prototypes and
underutilize rich multi-level abstractions.
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(a) Sub-hierarchy of ungulate. Left branch: deer-like
silhouettes (including ostriches). Right branch: grazing
versus ridden horses. The parent blends both.  





(b) Sub-hierarchy of cars. Parent: blends red, white,
and blue cars. Left branch: emergency (red fire trucks,
police cars); Right branch: red hatchbacks, blue sedans.

Figure 1: Examples of sub-hierarchies discovered by fitting a deep taxonomic network to CIFAR-10
data. For each cluster, we sampled nine images from the test set based on likelihood.

To bridge this gap, we propose deep taxonomic networks, a novel deep latent variable approach that
leverages variational inference [36, 18]. Our approach optimizes a large latent taxonomic hierarchy
structured as a complete binary-tree mixture-of-Gaussian prior. This hierarchical prior enables our
method to automatically discover abstraction structures and their associated prototypes directly from
unlabeled data (see Figure 1). We contribute the following: (a) A deep latent variable approach
that discovers fine-grained hierarchies from unlabeled data without assuming label counts; (b) A
theoretical analysis showing that maximizing the ELBO in our approach results in good hierarchical
prototypes that describe the data; (c) A simple training framework that does not require specialized
training procedures or pre-training and fine-tuning, and can seamlessly incorporate contrastive
learning [3] jointly with the variational inference objective; (d) Our models outperform related
hierarchical clustering models on image classification datasets of varying complexity and class labels
by a large margin using a novel evaluation mechanism that leverages rich prototypes discovered at all
hierarchical levels; (e) Our approach discovers rich, interpretable hierarchical prototypes at different
granularity.

2 Related work

Hierarchical clustering Hierarchical clustering organizes data into a nested structure of clusters,
revealing relationships at multiple granularities [40, 45]. Traditional agglomerative methods, such
as Ward’s minimum variance approach, iteratively merges the pairs of clusters by minimizing the
increase in total within-cluster variance. [45]. Deep learning based approaches learn the hierarchical
clusterings in an embedding space, with the advantage of integrating deep representation learning
techniques such as contrastive learning [3] in the clustering framework [30, 29, 48] for more robust
performance on high-dimensional data. For example, DeepECT [30] couples an autoencoder with a
projection-based divisive clustering layer to recursively split data into a binary tree in the learned
embedding space. Yet, many existing methods are limited by fixed class-based hierarchies and an
over-reliance on leaf clusters, ignoring rich intermediate prototypes. Most related to our work is
Cobweb [7, 26, 1], a concept formation system that builds concept hierarchies top-down based on
categorical utility [4] and identifies meaningful basic-level categories at intermediate nodes. Cobweb
is not constrained by label size, and it leverages its entire learned hierarchical structure at inference
time, including intermediate prototypes [1]. While Cobweb processes raw inputs and assumes
conditional independence of features, deep taxonomic networks employ neural networks to optimize
a potentially large, pre-defined taxonomic structure within an embedding space to jointly learn robust
data representations and informative hierarchical prototypes at all levels of the tree, facilitating the
discovery of basic-level clusters.
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Deep latent variable models Variational autoencoders (VAEs) [36, 18] are deep latent variable
approaches that use neural networks (encoder networks qϕ(z|x) and decoder networks pθ(x|z))
to learn data distributions by optimizing the Evidence Lower Bound (ELBO) objective. In this
framework, the prior distribution p(z) represents the underlying observation generation process.
While standard VAEs use a standard Gaussian prior p(z), the prior can be adjusted to account
for specific structures in the data. VaDE [15] proposes a Gaussian mixture prior to jointly learn
latent representations and cluster assignments. Other work [10, 38] leverages a nested Chinese
Restaurant Process prior [11] to learn hierarchical latent representations. Alternatively, hierarchical
VAEs [19, 27, 44] employ multiple stochastic latent layers to learn multiple approximated posteriors
at varying abstraction levels [41, 47]. For instance, MF-VAE [5] uses VLAE [47] to learn multi-
faceted clusterings of data, and TreeVAE [29] constructs a tree-like approximated posteriors using
LadderVAE [41] for hierarchical clustering. However, these approaches often increase computational
cost by optimizing multiple decoder networks and require specialized procedures [5] or frequent fine-
tunings [29]. Contrary to these approaches, deep taxonomic networks utilize a complete binary tree
mixture-of-Gaussians prior to explicitly support taxonomy within a single approximated posterior.

3 Deep Taxonomic Networks

We introduce deep taxonomic networks, a novel deep latent variable approach featuring a complete
binary tree Mixture-of-Gaussians prior. This method learns a hierarchical taxonomy by mapping
data to the most prototypical clusters, parameterized by their Gaussian priors. These clusters are
optimized for high intra-category similarity (low internal feature entropy) and high information gain
about the features from cluster membership. We start by describing the generative process within the
VAE framework in Section 3.1. Then we describe the variational inference process in Section 3.2
and its connection to prototypicality maximization in Section 3.3. Finally, we introduce a contrastive
learning extension for real-world images in Section 3.4.

3.1 Generative process with a hierarchical mixture-of-Gaussians prior
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Figure 2: The graphic model for deep taxonomic
networks. (a): solid arrows represent the gener-
ative sampling process. The grayed cluster c3 is
selected via the prior distribution p(c). (b): dashed
arrows represent the variational inference process.
Red: learnable parameters.

We define the conditional prior distribution over
the latent variable z using a hierarchical struc-
ture T , represented as a complete binary tree.
Each node c in T , has an associated prior prob-
ability p(c) and corresponds to a cluster defined
by parameters (µc, σ

2
c ), such that the condi-

tional latent prior p(z | c) = N (z | µc, σ
2
cI).

We assume an isotropic Gaussian for simplic-
ity, where σ2

cI denotes a diagonal covariance
matrix. Though our current analysis utilizes
a simplified covariance structure, the underly-
ing method is not limited to this configuration
and can be extended to other covariance struc-
tures. To enforce hierarchical dependency, the
parameters of a parent node cparent are the con-
vex combinations of those of its children, cleft
and cright. Specifically, we model the distribution at the parent node as a Gaussian approximation
to the mixture of its children’s distributions. By matching the first two moments of the mixture
αN (µcleft , σ

2
cleft

I) + (1− α)N (µcright , σ
2
cright

I), where α ∈ [0, 1] is a convex weight, we obtain:

µcparent = αµcleft + (1− α)µcright

σ2
cparent

= α

(
σ2
cleft

+
1

D
∥µcleft − µcparent∥22

)
+ (1− α)

(
σ2
cright

+
1

D
∥µcright − µcparent∥22

)
where D is the dimension of the latent space. These constraints ensure that parent clusters represent
broader distributions encompassing their children in the latent space. This approach also reduces the
number of learnable parameters as the intermediate clusters are inferred from the leaf clusters and the
convex weights at each branch (Figure 2). As shown in Figure 2a, the overall generative process for
an observation x proceeds as follows: (1) select a cluster c in T via a prior p(c); (2) sample a latent
representation z from the chosen cluster’s distribution: z ∼ N (µc, σ

2
cI); (3) generate the observation
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x conditioned on the latent representation via a decoder network fθ: x ∼ pθ(x | z). The decoder
defines Gaussian N (x | fθ(z), I) with unit variance for real-valued x or Bernoulli for binary x.

3.2 Variational inference

Deep taxonomic networks represent the data distribution p(x) using a hierarchical mixture-of-
Gaussians prior over T . We achieve this by maximizing the Evidence Lower Bound (ELBO) on
log p(x) using an amortized variational posterior qϕ(z, c | x) = qϕ(z | x)qϕ(c | x), where we
parameterize qϕ(z | x) = N (z | µϕ(x), σ

2
ϕ(x)I) by an encoder neural network gϕ(x). The overall

inference process is shown in Figure 2b. Formally:

log p(x) = log

∫
z

∑
c∈T

pθ(x | z)pθ(z | c)pθ(c)dz

= log

∫
z

∑
c∈T

qϕ(z, c | x)
pθ(x | z)pθ(z | c)pθ(c)

qϕ(z, c | x)
dz

= logEqϕ(z,c|x)

[
pθ(x | z)pθ(z | c)pθ(c)

qϕ(z, c | x)

]
≥ Eqϕ(z,c|x)

[
log

pθ(x | z)pθ(z | c)pθ(c)
qϕ(z, c | x)

]
(1)

where right-hand side of Equation (1) represents Jensen’s inequality and is the evidence lower bound
(ELBO) [18, 36], LELBO(ϕ, θ), and can be rewritten as (see full derivation in Appendix A.1):

LELBO(ϕ, θ) = Eqϕ(z|x) [log pθ(x | z)] (2)

− Eqϕ(c|x)DKL (qϕ(z | x) || pθ(z | c)) (3)

−DKL (qϕ(c | x) || pθ(c)) (4)
The ELBO objective can be interpreted as follows: Equation (2) measures the reconstruction quality
between the encoder gϕ(x) and the decoder fθ(z). Equation (3) is the Kullback–Leibler (KL)
divergence between the learned latent distribution of input x and the clusters in T , weighted by
qϕ(c | x), which represents the cluster assignment probability of x. Equation (4) regularize the
cluster assignment probability to be close to the prior distribution of the clusters in T . As suggested
in [15, 5], we can replace qϕ(c | x) with pθ(c | z) = pθ(c)pθ(z|c)∑

c′∈T pθ(c′)pθ(z|c′) , the cluster assignment
probability of z, with one Monte Carlo sample via a reparameterization trick [18].

3.3 Reinterpretation of ELBO as prototypicality maximization

In hierarchical clustering approaches, the concept of prototypicality quantifies how well a cluster
c within the hierarchy T encapsulates and informs about a given sample’s latent representation z.
Categorical utility (CU) [16, 4] formalizes this notion by providing a principled approach from
information-theory: let Z be the random variable over latent vectors z, CU is then defined as the
mutual information between Z and T :

CU = I(Z; T ) = H(Z) −
∑
c∈T

p(c)H(Z |T = c),

H(Z) is the entropy of the feature distribution. H(Z | T = c) is the conditional entropy of the
features given the cluster assignment c. CU quantifies the information gained about the features from
knowing c, favoring clusters in the hierarchical level with low internal entropy H(Z | T = c) and
large reduction from H(Z), analogous to cognitive basic-level categories [16, 4]. The prototypical
cluster c∗ = argmaxc[H(Z) −H(Z | T = c)] optimally balances cue validity (rich, predictable
internal features) with category validity (relevance as a category for z). Hence, the cluster assignment
probability p(c | z) now relies on cluster prototypicality, and we choose a uniform prior p(c) over
clusters in T such that Equation (4) becomes a regularizer encouraging utilization of all clusters.

We now demonstrate that optimizing the ELBO for this hierarchical approach encourages the discov-
ery of prototypical relationships between the latent representations z and each cluster c. Let X be
random variables over x, µz = µϕ(x), and σ2

z = σ2
ϕ(x), we can rewrite Equation (3) as follows:

− Eqϕ(c|x)DKL (qϕ(z | x) || pθ(z | c)) = Eqϕ(z,c|x) [log pθ(z | c)]− Eqϕ(z,c|x) [log qϕ(z | x)]

≈ Eqϕ(c|x)

[∫
z

N (z | µz, σ
2
z) logN (z | µc, σ

2
c )dz

]
+H(Z | X ) (5)
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The term H(Z | X ) can be approximated with Monte Carlo sampling over minibatches. See
Appendices A.2 and A.3 for full derivations. The entropy for a multivariate Gaussian with diagonal
covariance can be written as: H(Z | T = c) = D

2 log(2π) + D
2 + 1

2

∑D
d log σ2

cd. As a result,
Equation (5) can be expanded as follows:

−
∑
c∈T

qϕ(c|x)

[
D

2
log(2π) +

1

2

D∑
d

log σ2
cd +

1

2

D∑
d

σ2
zd + (µzd − µcd)

2

σ2
cd

]
+H(Z | X )

≈ −
∑
c∈T

qϕ(c|x)

[(
H(Z | T = c)− D

2

)
+

1

2

D∑
d

σ2
zd + (µzd − µcd)

2

σ2
cd

]
+H(Z | X )

≈ Eqϕ(c|x)[−H(Z | T = c)] + Eqϕ(c|x)

[
D

2
− 1

2

D∑
d

σ2
zd + (µzd − µcd)

2

σ2
cd

]
+H(Z | X )

≈ Eqϕ(c|x)[−H(Z | T = c)] +H(Z | X ) +G

≈ Epθ(c)[−H(Z | T = c)] +H(Z | X ) +G (6)

≈ −H(Z | T ) +H(Z | X ) +G

≈ −H(Z | T ) +H(Z)−H(Z) +H(Z | X ) +G

≈ I(Z; T )− I(Z;X ) +G (7)

where G = Eqϕ(c|x)

[
D
2 − 1

2

∑D
d

σ2
zd+(µzd−µcd)

2

σ2
cd

]
. The qϕ(c | x) term in Equation (6) can be

approximated as pθ(c) by the KL divergence term from Equation (4).

As shown in Equation (7), maximizing ELBO maximizes CU. Additionally, the maximization of
the negative mutual information term −I(Z;X ) can be understood as optimizing the information
bottleneck between the latent representation z and the input x [43, 39].

The hierarchical dependency introduced in Section 3.1 embeds abstraction and specificity directly
into the prior pθ(z | c) via the convex weight α. Each prototype’s parameters (µc, σ

2
c ) thus blend

broad parental characteristics with fine-grained child traits. Consequently, maximizing the mutual
information I(Z; T ) forces z to distinguish these semantically meaningful hierarchies, rather than
discovering arbitrary clusters as would be possible under a flat prior.

3.4 Integration of transformation-invariant feature learning

Learning discriminative representations for taxonomic hierarchies from unlabeled real world images
is challenging due to high intra- and inter-class variance. For example, ship and bird images may
share low-level features (e.g., blue sky, central object) yet belong to distinct semantic categories.
To address this, we extend deep taxonomic networks with contrastive learning [3]. The idea is to
learn an image representation that is invariant to different transformations such that only the most
descriptive features are preserved. Specifically, each image x is randomly augmented twice, yielding

2N views, and we minimize the NT-Xent loss: LNT-Xent = − log
exp

(
sim(hi,hj)/τ

)
∑

k ̸=i exp
(
sim(hi,hk)/τ

) , where

h is the projection head output on the encoder’s features and sim denotes cosine similarity. The
projection head absorbs augmentation variance, letting the encoder focus on invariance. We further
introduce cluster-level contrastive learning by projecting the cluster assignment distribution p(c | z)
and applying the same NT-Xent loss to encourage similar assignments [25, 48, 29]. We refer to
Appendix E.1 for the effects on the two loss terms.

4 Experiments

Unsupervised clustering accuracy Since deep taxonomic networks construct a hierarchy T
without prior knowledge of the true number of classes in the training data, standard unsupervised
clustering evaluation methods, such as the Hungarian algorithm [31] which assume a one-to-one
mapping between clusters and classes, become unsuitable. Instead, we propose a post-hoc annotation
strategy. Given the pre-trained taxonomy T derived from the training set Dtrain, we first perform a
forward pass of Dtrain through the frozen model to obtain the cluster prototypicality distributions
p(c | ztrain) for each training instance xtrain. Using the ground truth labels y ∈ Y associated with
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Dtrain, we aggregate these distributions for all data points belonging to the same class. This process
yields an annotation matrix A of dimensions |Y | × |T |. After normalization, each column of A
represents the empirical class distribution P (Y | c) for a specific cluster c ∈ T . Conceptually, clusters
higher in the taxonomy (e.g., the root) tend towards a uniform class distribution over a balanced
Dtrain, as they represent broader collections of data. Conversely, leaf clusters typically exhibit
sharper distributions, indicating a higher concentration of specific classes. To evaluate accuracy on a
test dataset Dtest, we similarly obtain p(c | ztest) for each test instance xtest. The predicted class
distributions for xtest is then computed as a weighted sum of the cluster class distributions stored in
A, where the weights are given by p(c | ztest): P̂ (y | ztest) =

∑
c∈T p(c | ztest)P (Y = y | c). A

key advantage of this evaluation approach is its flexibility. Since no model parameters are updated
during this evaluation phase, the deep taxonomic networks can be assessed on datasets with varying
sets of classification labels without requiring any retraining or fine-tuning.

Hierarchical clustering metrics In addition to accuracy (ACC) and normalized mutual information
(NMI), we also evaluate our approach on hierarchical clustering metrics: leaf purity (LP) and
dendrogram purity (DP) [20]. However, our approach differs from other hierarchical clustering
methods in that we do not assume the leaf cluster as the final destination of a data point; instead, any
cluster can serve as a prototype. We therefore propose probabilistic extensions to both LP and DP.
Our probabilistic LP measures cluster homogeneity via soft assignments, and our probabilistic DP
computes expected purity for same-class data pairs based on their shared likelihood across all potential
clusters, resembling a probabilistic version of lowest common ancestors. Detailed formulations for
both metrics are provided in Appendix B.

Datasets and baselines We evaluate the hierarchical clustering performance of deep taxonomic
networks on datasets of varying complexities and label sizes: MNIST [23], FashionMNIST (Fashion)
[46], CIFAR-10, and CIFAR-100 [21]. For CIFAR-100, we evaluate our approach against both the
20 superclasses (CIFAR-20) and the 100 fine-grained classes. To illustrate the ability to discover
taxonomic hierarchies, we additionally train our models on Omniglot [22]. We provide a detailed
description of datasets in Appendix C. We compare the hierarchical clustering performance of our
approach to deep hierarchical clustering methods such as TreeVAE [29] and DeepECT [30]. We
further compare our approach to Cobweb [7], which clusters raw pixels, and to Cobweb+VAE, which
uses a VAE model with our encoder and decoder network architectures to produce latent codes for
clustering. On CIFAR variants, contrastive learning is applied to the image inputs (Section 3.4),
whereas for Cobweb+VAE it is applied only to the latent representations. We additionally use the
publicly available code to train TreeVAE on CIFAR-100 with 100 classes using 100 leaf clusters.
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Figure 3: Hierarchical clustering performance on all evaluated datasets at varying depth of T . X-axis:
depth, Y-axis: performance.

Implementation details For a direct comparison to baselines, we use the same encoder-decoder
architecture from [29] for our approach. Detailed descriptions can be found in Appendix D.1. Our
approach initializes the Gaussian parameters of leaf clusters in T as well as the convex weights α at
each branch such that the rest of clusters in the hierarchy can be inferred. To determine the number of
clusters in T , we vary tree depth on all evaluated datasets. Figure 3 shows all four hierarchical metrics
improve with depth but plateau around depths of 8 to 10 for MNIST and Fashion, and 10 to 12 for
CIFAR-10. However, for CIFAR-20 and CIFAR-100, which feature greater class diversity, all metrics
consistently rise with increased depth, indicating our approach’s scalability with dataset complexity.
For a fair comparison across all datasets, we fix a depth of 10—yielding 2047 clusters—for all
experiments in this paper. For contrastive learning, we use a two-layer MLP (512 → 64) with ReLU
as the encoder projection head and a single 64-dimensional linear layer for the cluster-level projection
on p(c | z). We set NT-Xent temperatures to 0.5 (representation) and 0.3 (cluster), with a weighting
of 100 to match LELBO following [29]. To stabilize the training of a large T , we introduce two
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Figure 4: Prototypicality p(c | z) on test data over T . X-axis: Cluster indices of a flattened complete
binary tree, ordered left-to-right starting with its 210 leaf clusters. Y-axis: p(c | z).

additional entropy regularization terms that penalize biased higher-level parent clusters (i.e., α ≈ 1)
and indistinguishable lower-level clusters where their KL divergences are close. See Appendix D.2
for additional details. We train deep taxonomic networks for 400 epochs on all datasets with Adam
[17] at a constant learning rate of 1× 10−3 and a batch size of 256.

5 Results and discussions

5.1 Prototypicality across the learned taxonomy

Figure 4 shows the prototypicality p(c | z) for unlabeled test samples across evaluated datasets.
We observe that the most prototypical cluster can occur at any depth in the taxonomy, but is pre-
dominantly found in lower-level clusters. This pattern indicates that finer clusters capture the most
informative features of each data point [4], whereas higher-level clusters such as root, which reflect
more generalized averages, rarely serve as prototypes. Notably, MNIST and Fashion exhibit more
intermediate-level prototypes—likely because leaf clusters become too specific (e.g., unique hand-
writing styles) to represent a general prototype (Figure 5d). By contrast, the greater complexity and
variance in CIFAR-10, CIFAR-20, and CIFAR-100 necessitates deeper hierarchies to reach a similar
level of feature specificity.

Table 1: Hierarchical clustering performance (%) with standard deviations on 4 evaluated datasets.
†: Results are adopted from [29]. ∗: Contrastive learning is applied during training. Results are
averaged over 10 random seeds.

Dataset Models DP LP ACC NMI

MNIST

Cobweb 77.4±1.1 90.7±0.8 88.2±2.1 78.1±3.4

Cobweb + VAE 72.6±2.1 87.8±0.9 89.3±1.4 78.6±2.9

DeepECT† 74.6±5.9 90.7±3.2 74.9±6.2 76.7±4.2

TreeVAE† 87.9±4.9 96.0±1.9 90.2±7.5 90.0±4.6

DeepTaxonNet 76.6±2.3 96.7±0.2 94.8±0.2 88.1±0.6

Fashion

Cobweb 57.2±1.7 78.5±0.8 75.2±1.7 66.7±2.1

Cobweb + VAE 56.6±0.8 72.1±2.0 75.1±1.7 66.5±2.9

DeepECT† 44.9±3.3 67.8±1.4 51.8±5.7 57.7±3.7

TreeVAE† 54.4±2.4 71.4±2.0 63.6±3.3 64.7±1.4

DeepTaxonNet 59.8±0.8 81.6±0.3 81.2±0.2 72.2±0.2

CIFAR-10*

Cobweb + VAE 10.02±0.41 18.91±0.27 16.36±0.34 2.50±0.57

DeepECT† 10.01±0.02 10.30±0.40 10.31±0.39 0.18±0.10

TreeVAE† 35.30±1.15 53.85±1.23 52.98±1.34 41.44±1.13

DeepTaxonNet 42.89±1.12 54.31±0.63 67.97±0.91 51.83±0.70

CIFAR-20*

Cobweb + VAE 5.01±0.16 10.94±0.09 9.39±0.40 3.30±0.63

DeepECT† 5.28±0.18 6.97±0.69 6.97±0.69 1.71±0.86

TreeVAE† 10.44±0.38 24.16±0.65 21.82±0.77 17.80±0.42

DeepTaxonNet 17.40±0.23 27.87±0.47 40.72±0.39 29.36±0.47
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5.2 Hierarchical clustering performance

We evaluate deep taxonomic networks against established baselines on four datasets (Table 1). Overall,
deep taxonomic networks outperform all baselines in both hierarchical clustering accuracy (ACC,
NMI) and hierarchical purity (DP, LP) with the exception on MNIST dataset. We attribute MNIST’s
lower DP and NMI to its low inter- and intra-class variance, which causes bottom-level clusters to
capture handwriting idiosyncrasies rather than digit-level features (Figure 5d). By contrast, on Fashion
our approach outperforms all baselines by a large margin. When jointly trained with contrastive
learning on CIFAR-10/20, our approach outperforms baselines by learning more consistent hierarchies
and achieving higher classification accuracy. Notably, Cobweb models trained on raw pixels perform
competitively on MNIST and Fashion due to its feature-independence assumption, which can be
effective for simpler images where individual pixels alone may suffice to characterize the features
[32, 24]. However, Cobweb gains little from VAE embeddings, where it inherits feature dependencies
from the encoder networks. In contrast, our approach—despite assuming diagonal covariance—jointly
optimizes encoding and clustering end-to-end, implicitly learning feature dependencies and achieving
superior performance on both simple and complex, real-world images.

We argue that our approaches benefit from the learned intermediate prototypes. Leaf Purity (LP)
measures the class entropy at the leaves (the nodes with the most fine-grained semantic classes).
Table 1 shows that despite having substantially more leaf nodes (210 nodes) than TreeVAE and
DeepECT (10 nodes, corresponding to 10 classes), our approach’s leaf purity is comparable to the
baseline approaches (it has higher LP), suggesting robust, consistent, and well-structured fine-grained
semantic classes at the leaf level. In other words, while other approaches have 10 leaves corresponding
to the 10 classes, ours can identify more subclasses that are inherent in the data, but are not explicitly
called out in the labeling. This is beneficial for classification because our approach enables the model
to better disentangle subtle semantic differences that might found similar across labels (e.g., a digit
‘4’ that is similar to a ‘9’ in MNIST, or an ‘automobile’ that is similar to a ‘truck’ in CIFAR-10).

An interesting observation from the leaf-only approaches (TreeVAE and DeepECT) is that ACC is
lower than LP. This is expected as leaf-only approaches assume the same number of leaves as the
classes so the classification accuracy depends on both the quality of leaf nodes representing a class
(LP) and the routing quality that successfully brings data to a leaf node, and hence ACC should be
upper bounded by LP. However, we observe a substantial increase in ACC in our approach (e.g., on
CIFARs) compared to TreeVAE, despite having a similar LP. Notably, ACC is not upper-bounded by
LP, as is the case with the leaf-only approach. This result indicates that the additional ACC gain in our
approach is a benefit of utilizing additional intermediate nodes. In other words, by utilizing all levels,
our approach can correctly capture in intermediate nodes what would otherwise be misclassified in
the leaf nodes of leaf-only approaches, results in better classification accuracy.

Adaptation to new classification task without re-training Our approach enables flexible classifi-
cation across different label granularities without the need for re-training. Specifically, we used the
pre-trained, frozen hierarchy from CIFAR-20 in Table 1 to evaluate the 100 fine-grained classes using
the evaluation method described in Section 4. We find that deep taxonomic networks outperform
TreeVAE, which is re-trained by growing up to 100 cluster nodes, on all metrics, with accuracy of
26.36±0.36 compare to 11.98±0.18. This result suggests that our approach is able to adapt to different
classification objectives by utilizing the rich hierarchical prototype clusters.

Table 2: CIFAR-100 hierarchical classification results (%) on TreeVAE and deep taxonomic network.
†: The same, frozen model used in Table 1 on CIFAR-20. ∗: Contrastive learning is applied during
training TreeVAE. Results are averaged over 10 random seeds.

Dataset Models DP LP ACC NMI

CIFAR-100∗ TreeVAE 3.77±0.08 12.11±0.11 11.98±0.18 27.57±0.20

DeepTaxonNet† 8.29±0.26 15.68±0.38 26.36±0.36 37.03±0.33

Hierarchical classification on pre-trained features While we adopt the same encoder-decoder
model architecture as TreeVAE for a direct comparison, we argue that the performance of our
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approach benefit from models that learn a stronger feature representation. Inspired by L2H [34], we
perform hierarchical clustering on top of unsupervised pre-trained image features from DINOv2 [33].

Table 3: Hierarchical classification results (%) on
CIFAR-10 and CIFAR-100 using DINOv2 features.
⋆: Results are adopted from [34]. Underscore de-
notes the second best result.

Dataset Models DP LP ACC NMI

CIFAR-10
L2H-TEMI⋆ 90.2 95.8 95.6 90.1
L2H-Turtle⋆ 98.8 99.5 99.5 98.5
DeepTaxonNet 88.0 99.6 99.1 97.4

CIFAR-100
L2H-TEMI⋆ 50.2 69.8 68.2 77.8
L2H-Turtle⋆ 80.3 89.6 89.6 91.7
DeepTaxonNet 71.0 93.0 88.7 89.4

Specifically, we replace both encoder and de-
coder with a linear layer that maps from the
input dimension to the hidden dimension and
vice versa. We additionally disabled contrastive
learning in this setting. The idea is to test if our
approaches remain robust given a strong repre-
sentation and are directly comparable to the L2H
baseline that does not use contrastive learning.

Table 3 shows that when using stronger image
features, our approaches match the performance
from L2H in flat clustering metrics (ACC, NMI)
on all evaluated datasets. On hierarchical met-
rics (DP, LP), our approaches achieve higher LP
despite having much deeper hierarchical clus-
ters and more leaf nodes. While our approaches
reach a lower, but comparable DP than L2H variants, we argue that it is because our approaches learn
∼ 100× more intermediate nodes. These results suggest that the performance of our approach is not
limited to the current model architecture choice, and can benefit from a stronger feature representation,
while additionally offering much deeper hierarchical clusters, including intermediate clusters, and
without requiring prior knowledge of the number of labels.

5.3 Discovery of hierarchical prototypes

 





(a) A sub-hierarchy of casual footwear.

 





(b) A sub-hierarchy of high-heeled.

 





(c) A sub-hierarchy of digits 8 and 9.

 





(d) A sub-hierarchy based on handwritten features.

 





(e) A sub-hierarchy of rounded and angular characters.

 





(f) A sub-hierarchy of characters with dots and lines.

Figure 5: Examples of sub-hierarchy discovered by deep taxonomic networks on MNIST (5c, 5d),
Fashion (5a, 5b) and Omniglot (5e, 5f). Images are sampled from the test set per cluster by likelihood.

For the qualitative results, we present examples of sub-hierarchies discovered by deep taxonomic
network models trained on CIFAR-10 (Figures 1a and 1b), MNIST (Figures 5c and 5d), Fashion
(Figures 5a and 5b), and Omniglot (Figures 5e and 5f).
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On CIFAR-10, our approach uncovers interpretable hierarchies of both animal and vehicle classes.
Figure 1a splits far-away deer-like silhouettes from close-up horse shots, then refines by silhouette vs.
natural-color context and grazing vs. ridden scenes. Figure 1b divides service vehicles (industrial
machinery vs. emergency fleets) from passenger cars, then partitions compact models vs. red, white
and blue hatchbacks by form and hue.

Our approach also constructs hierarchies reflecting established categories in Fashion. Figure 5a
organizes casual footwear such as sneakers and flat shoes, while Figure 5b distinguishes styles
of high-heeled shoes. On MNIST, our model similarly forms hierarchies based on visual criteria.
Figure 5c partitions digits clearly by class, separating clusters of “8”s from “9”s. Figure 5d captures
finer similarities in handwritten styles, grouping visually similar “4”s with “9”s, and certain “3”s
with “8”s, highlighting the model’s ability to learn perceptually relevant features beyond labels.

Deep taxonomic networks similarly discover coherent structures from diverse handwritten characters
across numerous alphabets in Omniglot. Figure 5e groups characters by fundamental visual traits, sep-
arating predominantly rounded, continuous strokes from more angular, geometric features. Figure 5f
further distinguishes characters by their elemental composition and structure, grouping line-based
shapes (e.g., ρ- or Γ-like) apart from those with dots or fragmented strokes, and differentiating simple
vertical strokes (|) from structures like ⊤ or Π. These examples highlight our approach’s ability to
learn and organize abstract structural properties within complex visual data.

Overall, these qualitative examples show that deep taxonomic networks are able to discover rich,
interpretable hierarchical prototypes, capturing both coarse-grained semantic categories and fine-
grained visual distinctions within the data.

6 Conclusion, limitations, and future work
In this paper, we propose deep taxonomic networks, a novel deep latent variable approach with a
complete binary tree mixture-of-Gaussians prior that learns a taxonomic hierarchy over unlabeled
image data by finding the most prototypical clusters. Contrary to previous hierarchical clustering
methods, deep taxonomic networks do not reply on the true label size to construct the hierarchy,
and treat every cluster as the potential prototype of a datum. We analytically show that optimizing
the learning objective of deep taxonomic networks maximizes the ability to discover hierarchical
prototypes of the data. Our empirical results show that our approach outperforms baseline hierarchical
clustering methods on datasets of varying complexity and with varying label sizes by a large margin.
This is achieved through our novel evaluation method that leverages prototype clusters discovered at
all hierarchical levels, and that can use the learned hierarchy to support a new classification objectives
on the fly. Finally, we present qualitative results that show examples of subsets of discovered
taxonomic hierarchies learned from various datasets, where the hierarchies contain interpretable
hierarchical prototypes. Our findings suggest that deep taxonomic networks are a powerful new
unsupervised hierarchical clustering approach, with the potential to form human-like concepts.

Limitations and future work While the pre-allocated (up to a compute constraint) complete binary
tree prior makes the analysis straightforward, this assumption introduces an inductive bias that a
dataset should have balanced feature splits. However, this assumption might lead to a degraded
taxonomic hierarchy if the dataset is dominated by unbalanced data with low inter-class feature
entropy. Future work should focus on developing a dynamic mixture-of-Gaussians prior that adapts its
structure to the dataset. In addition, while the scope of this work is to study the discovery of taxonomic
hierarchy within VAE-based framework, future work should explore the generative capabilities of
deep taxonomic networks to produce high quality data at multiple levels of granularity.
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A Additional Derivations

A.1 Full EBLO Derivation

We begin from

log pθ(x) = log

∫
z

∑
c∈T

pθ(x | z) pθ(z | c) pθ(c) dz

= log

∫
z

∑
c∈T

qϕ(z, c | x)
pθ(x | z) pθ(z | c) pθ(c)

qϕ(z, c | x)
dz

= logEqϕ(z,c|x)

[
pθ(x | z) pθ(z | c) pθ(c)

qϕ(z, c | x)

]
≥ Eqϕ(z,c|x)

[
log

pθ(x | z) pθ(z | c) pθ(c)
qϕ(z, c | x)

]
(8)

We now expand the expectation in Equation (8):

LELBO(ϕ, θ) = Eqϕ(z,c|x)

[
log pθ(x | z)

]
+ Eqϕ(z,c|x)

[
log pθ(z | c)

]
+ Eqϕ(z,c|x)

[
log pθ(c)

]
− Eqϕ(z,c|x)

[
log qϕ(z, c | x)

]
. (9)

Use the factorization qϕ(z, c | x) = qϕ(c | x) qϕ(z | x) to split the last term:

Eqϕ(z,c|x)
[
log qϕ(z, c | x)

]
= Eqϕ(c|x) Eqϕ(z|x)

[
log qϕ(z | x)

]
+ Eqϕ(c|x)

[
log qϕ(c | x)

]
. (10)

Plugging Equation (10) into Equation (9), regroup terms:

1. Reconstruction term

Eqϕ(z|x)
[
log pθ(x | z)

]
(matches Equation (2))

2. Cluster-conditioned KL

Eqϕ(c|x)

[
Eqϕ(z|x)

[
log pθ(z | c)− log qϕ(z | x)

]]
= −Eqϕ(c|x)

[
DKL(qϕ(z | x) ∥ pθ(z | c))

]
matches Equation (3).

3. Cluster-prior KL

Eqϕ(c|x)

[
log pθ(c)− log qϕ(c | x)

]
= −DKL

(
qϕ(c | x) ∥ pθ(c)

)
(matches Equation (4)).

Putting it all together,

LELBO(ϕ, θ) = Eqϕ(z|x)
[
log pθ(x | z)

]︸ ︷︷ ︸
Equation (2)

− Eqϕ(c|x)
[
DKL

(
qϕ(z | x) ∥ pθ(z | c)

)]︸ ︷︷ ︸
Equation (3)

− DKL

(
qϕ(c | x) ∥ pθ(c)

)︸ ︷︷ ︸
Equation (4)

.
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A.2 Derivation of the First Term in Equation (5)

Eqϕ(z,c|x)[log pθ(z | c)]

=
∑
c∈T

∫
z

qϕ(z, c | x) log pθ(z | c) dz

=
∑
c∈T

∫
z

qϕ(c | x) qϕ(z | x) log pθ(z | c) dz

=
∑
c∈T

qϕ(c | x)
∫
z

N (z | µz, σ
2
z) logN (z | µc, σ

2
c ) dz

=
∑
c∈T

qϕ(c | x)
∫

N (z | µz, σ
2
z) logN (z | µc, σ

2
c ) dz

=
∑
c

qϕ(c | x)
∫

N (z | µz, σ
2
z)

[
−D

2 log(2π)− 1
2 log detΣc − 1

2 (z− µc)
⊤Σ−1

c (z− µc)

]
dz

=
∑
c

qϕ(c | x)

−D
2 log(2π)− 1

2 log detΣc − 1
2 EN (z|µz,σ2

z)

[
(z− µc)

⊤Σ−1
c (z− µc)

]︸ ︷︷ ︸
tr(ΣΣ−1

c )+(µz−µc)⊤Σ−1
c (µz−µc)


= −

∑
c

qϕ(c | x)
[
D

2
log(2π) +

1

2
log detΣc +

1

2

(
tr(ΣΣ−1

c ) + (µz − µc)
⊤Σ−1

c (µz − µc)
)]

For diagonal covariances Σ = diag(σ2
zd), Σc = diag(σ2

cd), one has

log detΣc =

D∑
d=1

log σ2
cd, tr(ΣΣ−1

c ) =

D∑
d=1

σ2
zd

σ2
cd

, (µz−µc)
⊤Σ−1

c (µz−µc) =

D∑
d=1

(µzd − µcd)
2

σ2
cd

.

Hence the final result:

= −
∑
c

qϕ(c | x)

[
D

2
log(2π) +

1

2

D∑
d=1

log σ2
cd +

1

2

D∑
d=1

σ2
zd

σ2
cd

+
1

2

D∑
d=1

(µzd − µcd)
2

σ2
cd

]
(11)

= −
∑
c∈T

qϕ(c|x)

[
D

2
log(2π) +

1

2

D∑
d

log σ2
cd +

1

2

D∑
d

σ2
zd + (µzd − µcd)

2

σ2
cd

]
(12)

A.3 Derivation of the Second Term in Equation (5)

By definition of the conditional (differential) entropy under the variational posterior,

H(Z | X ) = −Ep(x)

[
Eqϕ(z,c|x)

[
log qϕ(z | x)

]]
.

Because the posterior factorizes as

qϕ(z, c | x) = qϕ(c | x) qϕ(z | x) ,

and qϕ(c | x) does not depend on z, the inner expectation simplifies to

Eqϕ(z,c|x)
[
log qϕ(z | x)

]
= Eqϕ(z|x)

[
log qϕ(z | x)

]
.

Hence,
H(Z | X ) = −Ep(x)

[
Eqϕ(z|x)

[
log qϕ(z | x)

]]
.
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We approximate the outer expectation over p(x) by an empirical average over N training samples
{x(n)}Nn=1, and the inner expectation over qϕ(z | x(n)) by M Monte Carlo samples {z(n,m)}Mm=1.
Thus:

H(Z | X ) ≈ − 1

N

N∑
n=1

Eqϕ(z|x(n))

[
log qϕ(z | x(n))

]︸ ︷︷ ︸
approx. by M samples

≈ − 1

N

N∑
n=1

1

M

M∑
m=1

log qϕ
(
z(n,m) | x(n)

)
.

Equivalently:

H(Z | X ) ≈ − 1

NM

N∑
n=1

M∑
m=1

log qϕ
(
z(n,m) | x(n)

)
,

where
x(n) ∼ training data, z(n,m) ∼ qϕ

(
z | x(n)

)
via reparameterization trick [18].

B Probabilistic Hierarchical Clustering Metrics

B.1 Probabilistic Dendrogram Purity

We propose a probabilistic extension to Dendrogram Purity (DP) to suit our model where any cluster
c can serve as a prototype and data points x (with representations z) have soft assignments p(c|z) to
all clusters in the hierarchy. Traditional DP relies on the purity of subtrees at the Lowest Common
Ancestor (LCA) for pairs of same-class data points. In our probabilistic DP (DPprob), for any two
data points xi and xj belonging to the same ground-truth class Gk, we first define a shared cluster
likelihood for each cluster c as Sc(xi,xj) (Equation 13). The contribution of this pair to DPprob is
then the expected purity over all clusters c, where the purity of an individual cluster P (c,Gk) (as
defined in Equation 14) is weighted by the normalized likelihood Sc(xi,xj) that c is a shared cluster
for the pair (see Equation 15). The final DPprob is the average of these expected purities across all
same-class data pairs (as defined in Equation 16).

The mathematical formulation is as follows: Let x denote a data point and z its corresponding repre-
sentation. Let c be an arbitrary cluster (node) within the hierarchical structure T . The probabilistic
assignment of data point x to cluster c is given by p(c|z). Let Gk denote the k-th ground-truth class.

The shared cluster likelihood for any cluster c ∈ T for a pair of data points (xi,xj) is defined as:
Sc(xi,xj) = p(c|zi)p(c|zj) (13)

The probabilistic purity of an individual cluster c ∈ T with respect to a ground-truth class Gk is:

P (c,Gk) =

∑
xl∈Gk

p(c|zl)∑
all xm

p(c|zm)
(14)

For a pair of data points (xi,xj) that both belong to the same ground-truth class Gk, their contribution
to the Dendrogram Purity, termed the expected purity EP (xi,xj , Gk), is calculated as:

EP (xi,xj , Gk) =

∑
c∈T (Sc(xi,xj)× P (c,Gk))∑

c′∈T Sc′(xi,xj)
(15)

The overall probabilistic Dendrogram Purity (DPprob) is then the average of these expected purities
over all distinct pairs of data points belonging to the same ground-truth class:

DPprob =
1

Z

∑
k

∑
xi,xj∈Gk

i ̸=j

EP (xi,xj , Gk) (16)

where Z is the total number of such distinct pairs, calculated as Z =
∑

k

(|Gk|
2

)
, and EP (xi,xj , Gk)

is the expected purity for the pair (xi,xj) from class Gk.
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B.2 Probabilistic Leaf Purity

Standard Leaf Purity (LP) evaluates the homogeneity of leaf clusters in a hierarchy with respect to
ground-truth classes. It typically measures the proportion of data points in leaf clusters that belong
to the majority class within each respective leaf. To adapt this metric for our model, where data
points x (with representations z) have soft assignments p(c|z) to clusters c in the hierarchy, we define
Probabilistic Leaf Purity (LPprob). This formulation specifically considers the leaf clusters L of the
hierarchy and utilizes the probabilistic assignments p(L|z) for L ∈ L as fractional counts of data
point membership.

The mathematical formulation is as follows: Let L be the set of all leaf clusters in the hierarchy.
Let Gk denote the k-th ground-truth class. The probabilistic assignment of data point x (with
representation z) to a specific leaf cluster L ∈ L is given by p(L|z).
For each leaf cluster L ∈ L, we first determine the total probabilistic mass contributed by each
ground-truth class Gk:

M(L,Gk) =
∑

xi∈Gk

p(L|zi) (17)

The majority ground-truth class for leaf cluster L, denoted G∗
L, is the class that maximizes this

probabilistic mass:
G∗

L = argmax
Gk

M(L,Gk) (18)

The probabilistic mass of correctly assigned data points within leaf cluster L is therefore M(L,G∗
L).

The overall Probabilistic Leaf Purity (LPprob) is then calculated as the ratio of the sum of these
correctly assigned probabilistic masses across all leaf clusters to the sum of all probabilistic masses
assigned to any leaf cluster by any data point:

LPprob =

∑
L∈L M(L,G∗

L)∑
L′∈L

∑
all xj

p(L′|zj)
(19)

The denominator represents the total probabilistic assignment of all data points to the set of leaf
clusters. If, for every data point xj , the sum of its probabilities to leaf clusters

∑
L′∈L p(L′|zj)

equals 1 (meaning each point’s probability mass for leaf assignment is fully accounted for among the
leaves), the denominator simplifies to N , the total number of data points.

C Datasets

For our experimental evaluation, we utilize several standard image datasets with varying characteris-
tics and complexity. These datasets were chosen to evaluate our model’s performance across different
image types, resolutions, and numbers of classes and samples.

MNIST The MNIST dataset [23] is a widely used benchmark consisting of a total of 70,000
grayscale images of handwritten digits (0-9). The dataset is split into a training set of 60,000 images
and a testing set of 10,000 images. It comprises 10 distinct classes, with each class containing
approximately 7,000 images in total (6,000 for training and 1,000 for testing). Each image has a
resolution of 28× 28 pixels.

Fashion-MNIST Fashion-MNIST [46] is designed as a direct replacement for the original MNIST,
offering a more challenging benchmark with images of clothing items. This dataset also contains
70,000 grayscale images (28 × 28 pixels), split into 60,000 for training and 10,000 for testing. It
features 10 distinct classes of apparel, with a similar distribution of approximately 7,000 images per
class.

CIFAR-10 The CIFAR-10 dataset [21] consists of 60,000 color images (32×32 pixels) categorized
into 10 distinct classes representing real-world objects such as animals, vehicles, and fruits. The
dataset is typically divided into 50,000 training images and 10,000 testing images, with 6,000 images
per class evenly split between the training and testing sets (5,000 for training, 1,000 for testing).
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CIFAR-100 CIFAR-100 [21] is a finer-grained classification dataset containing 60,000 color images
(32× 32 pixels), typically split into 50,000 for training and 10,000 for testing. It features 100 distinct
classes, with each class containing exactly 600 images (500 for training and 100 for testing). These
classes can also be grouped into 20 broader superclasses. The images depict a wide variety of objects,
providing a more challenging and granular classification task than CIFAR-10.

Omniglot For exploring the discovery of character hierarchies, we utilized the Omniglot dataset
[22]. Omniglot is a collection of 1,623 different handwritten characters from 50 alphabets. Each
character was drawn by 20 different individuals, resulting in 20 samples per class. This dataset is
characterized by a large number of classes and a small number of samples per class, making it suitable
for evaluating the model’s ability to form hierarchies in a few-shot setting. The images are typically
grayscale. For our experiments, we exclusively used the training set of the Omniglot dataset.

D Additional Implementation Details

D.1 Encoder-Decoder Architecture

The encoder architecture varies according to input image type and dimensions:

Grayscale Datasets (28×28 pixels). For datasets such as MNIST and FashionMNIST, the encoder
applies three sequential convolutional layers to shrink the spatial dimensions from 28× 28 down to
3× 3 while increasing channel capacity:

• Conv1: kernel 3× 3, stride 2, padding 1, maps 1× 28× 28 → 8× 14× 14, followed by
Batch Normalization [14] and ReLU.

• Conv2: kernel 3 × 3, stride 2, padding 1, maps 8 × 14 × 14 → 16 × 7 × 7, followed by
Batch Normalization and ReLU.

• Conv3: kernel 3 × 3, stride 2, padding 0, maps 16 × 7 × 7 → 32 × 3 × 3, followed by
Batch Normalization and ReLU.

The resulting 32 × 3 × 3 tensor serves as the encoded feature representation. For Omniglot, the
encoder comprises six sequential convolutional layers:

• Conv1: 3× 3, stride 1, padding 1, 1 → 32, preserves 28× 28, + BatchNorm + ReLU.
• Conv2: 4× 4, stride 2, padding 0, 32 → 32, down to 13× 13, + BatchNorm + ReLU.
• Conv3: 3× 3, stride 1, padding 1, 32 → 64, maintains 13× 13, + BatchNorm + ReLU.
• Conv4: 4× 4, stride 2, padding 0, 64 → 64, down to 5× 5, + BatchNorm + ReLU.
• Conv5: 3× 3, stride 1, padding 1, 64 → 128, maintains 5× 5, + BatchNorm + ReLU.
• Conv6: 4× 4, stride 2, padding 0, 128 → 128, down to 1× 1, followed by ReLU.

RGB Datasets (32 × 32 pixels). For datasets such as CIFAR-10 and CIFAR-100, the encoder
employs modified ResNet-style blocks [12] used in [29]. Each residual block includes a weighted
skip connection scaled by 0.1. The number of convolutional filters starts from 32 and doubles with
each downsampling stage, culminating in a final feature map size of 256× 4× 4.

Latent Space and Decoder. The latent representation z has a dimension of 8 for grayscale datasets
and 64 for RGB datasets. The decoder mirrors the encoder architecture, utilizing transposed convolu-
tional layers to reconstruct the input images from the latent vector.

D.2 Regularizer Terms

To learn a stable taxonomic hierarchy on a large amount of clusters (i.e., a large T ), we propose two
regularizers to help stabilize the training. The first regularizer penalizes trivial parent splits such
that one of the two children has a very low convex weight α. Following [8], we impose an entropy
regularizer on α at each branch to encourage a uniform split. We decay the entropy regularizer weight
exponentially towards the leaf with λent. Formally,

Rent(T ) =
∑
c∈T

λ
depth(c)
ent

[
−αc logαc − (1− αc) log(1− αc)

]
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Additionally, in a large taxonomic hierarchy, leaf-level clusters tend to be close to each other, as fewer
discriminative features can be used to separate two children down the tree. To encourage discovering
as much taxonomic prototypes as possible, the second regularizer penalizes any two leaf clusters
from being too close together by a margin set by hyperparameter as measured by their symmetric KL
divergence. We decrease the weighting exponentially bottom-up with λdkl. Formally,

Rdkl(T ) =
∑

cleft,cright∈T
max

{
0, mλ

N−depth(c)
dkl −

[
DKL

(
cleft ∥ cright

)
+DKL

(
cright ∥ cleft

)]}
where m is the margin and N is the depth of T . In out experiment, we set m to 1.2 and both λent and
λdkl to 0.01. We refer to Appendix E.2 for ablation studies on the two regularizer terms.

D.3 Full List of Hyperparameter

We provide the list of hyperparameter used in our experiment in Table 4.

Hyperparameter Value

Training
Learning rate 1× 10−3

Batch size 256
Epochs 400
|T | 10 layers, or 2047 clusters
λdkl 0.01
λent 0.01
m 1.2

ELBO Loss
Reconstruction weight 5.0
KL divergence weights 1.0

Contrastive Loss
Embedding contrastive temperature 0.5
Clustering contrastive temperature 0.3
Loss weight 100

Model
dim(z) 8 for grayscale image, 64 for RGB

Table 4: Summary of hyperparameter settings.

D.4 Compute Resources

Experiments are conducted on a single NVIDIA A40 GPU. Estimated training times are clearly
provided for reproducibility:

• MNIST, FashionMNIST, and Omniglot training typically requires approximately 45 minutes
per run.

• CIFAR-10 and CIFAR-100 require approximately 3 hours per training run.

E Ablation Study

E.1 Contrastive Learning

To understand the impact of the two contrastive loss terms, we conduct an ablation study presented
in Table 5. We evaluate four configurations: Embedding only (embedding-level contrastive loss),
Clustering only (clustering-level contrastive loss), No contrastive (no contrastive learning), and the
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Full model (both contrastive terms applied). The results show that any form of contrastive learning
improves performance over the baseline, with the full model achieving the highest scores across all
four hierarchical clustering metrics.

Ablations DP LP ACC NMI
Full 42.74 54.81 67.13 51.34

Clustering only 39.60 48.84 65.41 50.08
Embedding only 22.34 38.10 40.92 21.91
No contrastive 19.60 37.05 38.59 20.07

Table 5: Ablation study of contrastive loss on CIFAR-10.

E.2 Regularizers

To evaluate the impact of the regularizer terms, we conduct an ablation study on both Fashion and
CIFAR-10 datasets, as shown in Tables 6 and 7. We analyze four settings: the Full model (both
regularizers applied), Rent only, Rdkl only, and No regularizers.

The results indicate that the entropy regularizer (Rent) significantly improves the hierarchical purity
metrics—DP and LP—especially LP, across both datasets. Notably, on CIFAR-10, the combination
of both regularizers achieves the best performance across all four metrics, suggesting that the two
terms are complementary in optimizing the hierarchical structure.

In contrast, on the Fashion dataset, the effect of both regularizers is less pronounced, particularly for
the hierarchical clustering accuracy metrics—ACC and NMI. This difference may stem from the
higher complexity and greater intra- and inter-class variance of CIFAR-10, where the regularizers
contribute more effectively to refining hierarchical boundaries.

Overall, our results suggest that Rent is crucial for enhancing hierarchical purity, while the combina-
tion of Rent and Rdkl proves especially effective in managing more complex datasets like CIFAR-10.

Ablations DP LP ACC NMI
Full 42.74 54.81 67.13 51.34

Rent only 42.13 52.85 66.98 50.70
Rdkl only 41.43 50.92 66.02 49.98

No regularizers 40.38 50.26 65.39 48.17

Table 6: Ablation study of regularizer terms on CIFAR-10.

Ablations DP LP ACC NMI
Full 59.12 81.44 81.10 72.29

Rent only 58.91 81.01 81.04 72.29
Rdkl only 54.69 78.71 80.11 72.12

No regularizers 52.60 78.30 80.62 72.39

Table 7: Ablation study of regularizer terms on Fashion.

F Broader Impacts and Risks

F.1 Broader Impacts

We introduces Deep Taxonomic Networks for unsupervised hierarchical prototype discovery, a
method inspired by the human cognitive capacity for learning, organizing knowledge, and forming
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hierarchical conceptual structures[42][35][9][2], particularly the principles of hierarchical taxonomies
and prototype representation[35].

F.1.1 Positive Impacts

By automatically organizing complex, unlabeled data into interpretable hierarchical taxonomies
and revealing associated prototypes[39], our model can significantly improve data exploration
and understanding. It can provide more interpretable representations compared to flat clustering
methods[25][28]. This method will be valuable in biology, material science and social science, where
discovering inherent structures in large datasets leads to new insights, hypothesis generation, and
innovative discovery.

Inspired by human hierarchical concept formation[42] and the psychological relevance of basic-level
categories[4] [16], this work could potentially contribute to developing more intuitive and effective
educational tools or interfaces that help users organize and understand complex information by
visually representing hierarchical relationships, building on computational models of categorization
like Cobweb[1][13].

F.1.2 Negative Impacts

As an unsupervised learning method, deep taxonomic networks are susceptible to learning and
potentially amplifying biases present in the training data. If the data reflects societal biases (e.g.,
in representation of certain demographic groups or concepts), the learned taxonomic structure and
prototypes could entrench these biases, potentially leading to unfair or discriminatory outcomes if the
model is used in downstream applications that affect individuals or groups.

F.2 Risks

Given that the model is a deep generative latent variable model within the VAE framework
[14][18][36], it learns to model the data distribution. If applied to data that could be used to
generate or organize misleading information, such as grouping images or text in a biased way, the
discovered hierarchies could potentially be exploited to make fake content appear more structured
or credible, contributing to the spread of disinformation. While the model operates on unlabeled
data, the discovery of fine-grained prototypes and hierarchical clusters across different levels of the
taxonomy could potentially reveal sensitive or private information, particularly if the discovered
categories are highly specific or linkable to individuals.

G Licenses

We provide details regarding the licenses of external assets used in this work, presented in Table 8.

Asset URL License

Datasets

MNIST [23] Link Creative Commons Attribution-Share Alike 3.0
Fashion-MNIST [46] Link MIT License
CIFAR-10/100 [21] Link MIT License
Omniglot [22] Link Creative Commons Attribution-ShareAlike 4.0 In-

ternational License

Code

Tree VAE Code [29] Link MIT License

Table 8: Licenses for assets used in our experiments.
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• For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

• If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]

Justification: We will release our models to github upon acceptance.

Guidelines:
• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Including this information in the supplemental material is fine, but if the main contribu-

tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.

Guidelines:
• The answer NA means that the paper does not involve crowdsourcing nor research with

human subjects.
• Depending on the country in which research is conducted, IRB approval (or equivalent)

may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core work of this paper does not use LLMs, nor are LLMs used as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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